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Abstract

Time–frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are

performed using wavelet transform (WT) and Hilbert–Huang transform (HHT) and their performances are compared in

context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave

scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave

from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the

time–frequency domains. It is shown how such an error bound can provide an estimate of error in the modelling of wave

propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage

information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying

localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage

and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time–frequency

representation helps to correlate the variation of damage index measures with respect to the damage parameters like

damage size and material degradation factors.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Not much research has been reported on the parametric identification of various types of damages in
structures using stress waves compared to the research done using vibration and modal analysis and test data.
The existence of damage in a structure is generally traced by comparing the time-domain travelling wave
response of the structure at its present state with a base-line response. Any fluctuation from the base-line
response is correlated to the damage location through the time of arrival of the new peaks (scattered waves).
This is also true for damage initiation and progression in the form of strain energy release from the damaged
zone that arrives at the measurement location in the form of transients. Therefore by employing the wave
based methods, the presence of damage in a structure is detected by looking at the wave parameters affected
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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by the damage. The wave parameters that are commonly used for damage detection are the parameters
representing attenuation and reflection of waves due to damage, mode conversion, etc. Numerical simulation
based on a parameterised model becomes useful for this purpose.

For localised and small size of damages such as matrix cracks, delaminations and fiber fracture in
composite, a Lamb wave-based interrogation technique is most suitable for identification and quantification
of damage. In composites, the percentage of degradation of ply properties can be considered as a set of
parameters. Similar parametric representation or idealisations are also possible for other types of damages,
such as transverse micro-cracks in cross-ply laminates, progressive damages leading to delamination and fiber
fracture, etc.

In order to overcome various computational problems like large system size, mesh sensitivity, numerical
stability and accuracy in the hp-finite element model for wave scattering, a spectral finite element method
(SFEM) has been developed [1]. The SFEM formulation for wave propagation in composite beams using
Euler–Bernoulli beam theory and first-order shear deformation theory (FSDT) was reported by Mahapatra
et al. [2,3]. To model the damages like transverse matrix cracking in a composite beam, the degraded material
properties are substituted in the damaged portion of the beam. With this type of mechanistic description, a
spectral element with degraded material properties was formulated by Garg et al. [4]. Spectral element with
delamination type of damage in a composite beam was proposed by Nag et al. [5], where the exact dynamics of
internally debonded sub-laminates was taken into account. This formulation then condense out the FE nodal
information of the internal sub-elements, and hence allows one to replace an undamaged composite beam
segment with a spectral element with damage where delamination may exists. Similar work was carried out by
Ostachowicz et al. [6] to model delaminated composite beam using SFEM. Krawczuk et al. [7] have proposed
the formulation of a finite composite beam element with an open crack. The damaged part of the beam has
been modelled by a SFEM with a crack, while the undamaged part has been substituted by 3-node beam
element. Ostachowicz et al. [8] have used SFEM to model wave propagation in damaged structures. The
kinematics of a number of spectral finite elements to model damage, namely a cracked rod, a cracked
Timoshenko beam, a delaminated multilayer composite beam, and cracked plate spectral finite elements was
discussed. It is easily seen that spectral approach gives more information and is sufficient for damage
detection. In the present work, SFEM is employed to simulate wave propagation in composites with various
types of damages.

A major aspect of the problem under consideration is the identification of the reflection, mode conversion
and scattering of the Lamb waves due to damage. It should be noted that the effects of damage on the
propagating waves are small compared to the effects due to the geometry of the finite structure itself which
causes dispersion (phase modulation) and scattering of waves. In order to extract a meaningful information
about the damage parameter from the signals and also to remove baseline noise due to boundary scattering,
we employ time–frequency analysis in this paper. In the time–frequency plane, the arrivals of the scattered
waves, generated by the presence of damage, are identified in term of arrival time, which is a function of the
group speed. Hence with the help of arrival time information and frequency dependent group speed from
dispersion curves, it is possible to estimate the damage location. Quek et al. used time–frequency methods like
wavelet transform (WT) [9] and Hilbert–Huang transform (HHT) for detecting the location of the damage
from experimental signals [10]. However, extracting more number of quantitative estimates regarding damage
size and its structural influence are challenging tasks. We address some of the related issues in the following
sections.

2. Time–frequency analysis

A wide variety of signal processing methods are currently available, namely the time-series analysis, the
frequency analysis and the time–frequency analysis. Time-series methods cannot separate defect scattered
composition appropriately from a raw signal containing frequency/wavelength sensitive features over multiple
frequencies. In the frequency domain analysis, we loose the time information such as arrival time, dispersion,
etc. These problems compel one to combine the time-domain information with the frequency domain
information resulting in time–frequency analysis. A time–frequency representation (TFR) of a signal provides
information about how the spectral content of the signal evolves with time, thus providing an ideal tool to
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analyze and interpret non-stationary signals. This is performed by mapping a one-dimensional signal from the
time domain to a two-dimensional time–frequency space. A variety of methods for obtaining the energy
density of a function, simultaneously in the time and frequency have been developed, most notably the short
time Fourier transform (STFT), Wigner–Ville distribution (WVD), WT and HHT.

2.1. Short time Fourier transform (STFT)

The STFT is a modified version of the Fourier transform [11]. In STFT, the non-stationary signal is divided
into small segments, which are assumed to be stationary. This is done using a window function of a chosen
width. The window is shifted and multiplied with the signal to obtain the set of stationary signals. Fourier
transform is then applied to each of these short window signals. One can write

f̂ ðo; tÞSTFT ¼
Z þ1
�1

f ðtÞgðt� tÞe�jot dt, (1)

where f ðtÞ is the signal analysed, gðtÞ is a window function, f̂ indicates the transformed signal, o is the angular
frequency and t is a parameter for translation along time axis. In STFT, once the window has been chosen the
time–frequency resolution is constant throughout the time–frequency plane.

2.2. Wavelet transform (WT)

The WT was introduced by a French geophysicist Morlet in the early 1980 to study seismic signals [12].
Later Grossmann, Meyer, Mallat and Daubechies established a proper mathematical foundation for wavelets
[13]. Since then, wavelets have been extensively employed in signal processing applications. In WT, a varying
window function is used, which can be dilated and compressed and is called the mother wavelet. A wavelet is
defined using two parameters: a scaling parameter a, which is the inverse of frequency, and a translation
parameter b, which translates the window function along the time axis. The continuous WT of a signal f ðtÞ is
given by

f̂ ða; bÞWT ¼
1ffiffiffi
a
p

Z þ1
�1

f ðtÞc�
t� b

a

� �
e�jot dt, (2)

where c is the wavelet function. WT overcomes the resolution problem of STFT by letting the resolution of
both the time and the frequency vary in the time–frequency plane in order to obtain a multiresolution map.

2.3. Hilbert– Huang transform (HHT)

The HHT proposed by Huang et al. [14] is suitable for analysing both nonlinear and non-stationary signals
in the time–frequency plane. HHT consists of two parts, one is the empirical mode decomposition (EMD) and
the other part is the Hilbert transform (HT). The objective behind EMD is to decompose a measured response
signal xðtÞ into intrinsic mode functions (IMFs) that admit well-behaved HT. It has been shown by Huang
et al. [14] that the characteristics of the signal can be extracted through the behaviour of the IMFs, where
the first IMF has the highest frequency contents of the signal. The instantaneous frequency is obtained by
applying HT to each IMF obtained from EMD. The HT of a signal xðtÞ is given by

yðtÞ ¼ HTðxðtÞÞ ¼
1

p
PV

Z þ1
�1

xðtÞ
t� t

dt, (3)

in which PV indicates the cauchy principal value of the singular integral. A complex analytic signal zðtÞ is then
formed as

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ aðtÞeiyðtÞ, (4)

where aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and yðtÞ ¼ tan�1ðy=xÞ. Here, aðtÞ is the instantaneous amplitude, y is the phase

function and the instantaneous frequency is o ¼ dy=dt. The limitations in the above steps are that they do not
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have a proper mathematical basis compared to other time–frequency analysis. Also there are numerical
convergence issues in getting the IMFs.

Jeong and Jang [15] constructed dispersion curves for thin composite plates by applying WT. The group
velocity computed at different frequencies were used to locate the acoustic emission source location. Prosser
et al. [16] used WVD to study dispersion of lamb waves in composite plates. The drawback of WVD compared
to other TFR methods is the presence of cross-energy terms and these terms make time–frequency analysis
difficult. Paget et al. [17] embedded PZT sensors in composites and conducted experiments to study damages
like delamination, impact damage and sawcut damage. In that work WT was used to study the experimental
signals and damages were differentiated by looking at the wavelet coefficients. Ip et al. [18] used the Gabor
wavelet to extract the dominant wave group from the measured acceleration signals. The wave speed of the
fundamental antisymmetrical Lamb wave mode (A0) mode in an aluminium beam was determined and flexural
modulus was computed in that work.

Pines et al. [19] used HHT for structural health monitoring of civil structures. Vibration signals were studied
in the above work using HHT and the changes in frequency and magnitude were used to characterise the
damage in the structure. Vibration based damage detection in composite wingbox structure using HHT was
proposed by Chen et al. [20]. It was found that in HHT, serious problems of the spline fitting can occur near
the end points, where the cubic spline fitting can have large swings. These end swings can eventually propagate
inward during EMD and corrupt the whole data, especially in the low frequency band [14]. Chen et al.
analysed the problem of end effects in HHT and proposed a method to overcome it. TFR analysis of transient
dispersive waves was carried out by Apostoloudia et al. [21]. They compared the performance of WVD, WT
and HHT by analysing the flexural waves in beams subjected to an impact load. Most of the published
literature involving HHT are related to the study of vibration problems and very few work has been reported
using HHT to study high frequency acoustic and ultrasonic scattering in composite structures.

The main focus of this paper is to provide useful mathematical and computational insight into the problem
of damage detection in composite structures based on wave propagation technique. The paper aims to use
time–frequency analysis for characterisation of damages in composites, namely, (1) identifying localised
damages and (2) dispersion of multifrequency signal after they interact with different types of damages. The
effectiveness of the two TFR methods, namely WT and HHT, are investigated. The focus here is to compare
their ability in quantifying damage by analysing experimental and simulated signals from damage.
3. A comparative view of various time–frequency analysis

Even though both STFT and WT have proper mathematical representation, they have the drawback of
having non-adaptive basis. Other problems are the energy leakage and the presence of cross-energy terms in
the energy distribution in the time–frequency plane for both STFT and WT coefficients. STFT and WT are
linear transforms, whereas their energy representations are always nonlinear in nature. The cross-terms that
exist in the energy distribution of both WT and STFT for a multicomponent signal are comparable with those
found in WVD. Consider a signal x̄ such that

x̄ðtÞ ¼ x1ðtÞ þ x2ðtÞ, (5)

where x1ðtÞ and x2ðtÞ are the components of the signal. STFT of signal x̄ is given by

^̄xðo; tÞSTFT ¼ x̂1ðo; tÞSTFT þ x̂2ðo; tÞSTFT. (6)

Now, let us consider the energy distribution of ^̄x, which is given by

j ^̄xðo; tÞSTFTj
2 ¼ jx̂1ðo; tÞSTFT þ x̂2ðo; tÞSTFTj

2

¼ ½jx̂1ðo; tÞSTFTj
2 þ jx̂2ðo; tÞSTFTj

2�autocomponent

þ 2Re½x̂1ðo; tÞSTFTx̂�2ðo; tÞSTFT�cross-component

¼ jx̂1ðo; tÞSTFTj
2 þ jx̂2ðo; tÞSTFTj

2

þ 2jx̂1ðo; tÞSTFTjjx̂2ðo; tÞSTFTj cos½fx1
ðo; tÞ � fx2

ðo; tÞ�, (7)
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where x̂�2ðo; tÞSTFT is the complex conjugate of x̂2ðo; tÞSTFT, jx̂ðo; tÞSTFTj and fðo; tÞ are the magnitude and
phase, respectively. The magnitude and the phase constitute the spectogram. The first two terms correspond
to the squared magnitude of the STFT autocomponents, whereas the last term is the cross-component.
In general, for a multicomponent signal x̄ðtÞ ¼

Pn
i¼1 xiðtÞ the energy distribution of ^̄xðo; tÞSTFT can be

expressed as

j ^̄xðo; tÞSTFTj
2 ¼

Xn

i¼1

j ^̄xiðo; tÞSTFTj
2 þ 2

Xn�1
k¼1

Xn

l¼kþ1

jx̂kðo; tÞSTFTjjx̂lðo; tÞSTFTj cos½fxk
ðo; tÞ � fxl

ðo; tÞ�. (8)

Similarly for a multicomponent signal, the energy distribution of ^̄xða; bÞWT is given by

j ^̄xða; bÞWTj
2 ¼

Xn

i¼1

j ^̄xiða; bÞWTj
2 þ 2

Xn�1
k¼1

Xn

l¼kþ1

jx̂kða; bÞWTjjx̂lða; bÞWTj cos½fxk
ða; bÞ � fxl

ða; bÞ�. (9)

The cross-terms for the WT and the STFT occur at the intersection of their respective WT and STFT spaces
[22]. The parameters of the cross-terms are a function of the difference in the central frequencies and central
times of the perpended signals. The amplitude of the cross-terms can be as large as twice the product of the
magnitude of the transforms of the individual components of the signal. The cross-terms in Eqs. (9) and (10)
are functions of the product jx̂kðo; tÞSTFTjjx̂lðo; tÞSTFTj and jx̂kða; bÞWTjjx̂lða; bÞWTj, respectively. This product
will be zero if jx̂kðo; tÞSTFTj and jx̂lðo; tÞSTFTj (for WT jx̂kða; bÞWTj and jx̂lða; bÞWTj) have non-overlapping
supports. To show the influence of the cross-terms in the energy distributions of both STFT and WT, let us
consider an analytical signal

xðtÞ ¼ cos 2pð500tÞ þ cos 2pð1500tÞ.

The energy distributions of the signal using STFT and WT are shown in Figs. 1 and 2. In the example, we have
chosen a hamming window for STFT and Morlet wavelet for WT to analyse the multicomponent signal.
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Fig. 1. STFT energy distribution: (a) signal xðtÞ ¼ cosð2pð500tÞÞ þ cosð2pð1500tÞÞ; (b) autocomponents; (c) cross-components;

(d) spectogram with T ¼ 2:5ms.
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Fig. 2. WT energy distribution: (a) signal xðtÞ ¼ cosð2pð500tÞÞ þ cosð2pð1500tÞÞ; (b) autocomponents; (c) cross-components;

(d) scalogram.
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The window or the wavelet functions affect the concentration of the autoterms in the signal and the overlap
between them shown in Figs. 1 and 2 leads to the cross-terms. The presence of cross-terms in the energy
distributions affects the time–frequency localisation, thus resulting in energy leakage. The existence of cross-
term depends on the nature of the multicomponent signal and the choice of window or wavelet functions.
These cross-term contributions have to be minimised in order to have an accurate time–frequency localisation.

3.1. Advantages and limitations of HHT

STFT and WT are suitable for studying only linear and non-stationary signals. Both STFT and WT use a
single window function or a priori chosen basis to analyse the entire signal and hence making themselves non-
adaptive in nature. This problem is overcome by HHT [14], which is suitable for analysing both nonlinear and
non-stationary signals in the time–frequency plane. The adaptive nature of HHT makes it superior compared
to other methods of time–frequency analysis.

The method or the idea of EMD in HHT is faced with a fundamental difficulty of not admitting an
analytical definition, but of being rather described by the algorithm, thus making the analysis of its
performance difficult. The EMD algorithm consists of the following important issues (a) extrema locations (b)
extrema interpolation (c) end effects (d) sifting and stopping criterion [23]. The EMD algorithm generally
operates on real space and discrete time signals. If the time signal is not sampled properly, the extremas may
fall in between the sampling points. This problem can be solved by oversampling the signal. We use cubic
spline function to interpolate between the extrema points and construct the IMF. Such an interpolation
scheme introduces overshoots in order to achieve continuous second-order derivatives at the extrema points.
These effects introduce new extrema points that should have not been present in the original signal or shifting
of the extrema points to another location. As a result, it introduces new high frequencies at false positions in
the signal. Another problem with cubic spline is its poor behaviour at the end points of the signals. The end
effects surface when one has to decide what to do with the first and the last samples. The drawback of using
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spline function for interpolation and the end effects of EMD is demonstrated next by analysing the following
signal:

xðtÞ ¼

0; 0pto0:3;

sinð10ptÞ þ sinð100ptÞ þ sinð200ptÞ; 0:3pto0:6;

0; 0:6pto0:9;

sinð10ptÞ þ sinð120ptÞ þ sinð240ptÞ; 0:9pto1:2;

0; 1:2pto1:5:

8>>>>>><
>>>>>>:

This signal and its IMFs are shown in Fig. 3. The first and the last samples are not subjected to any end
conditions and this results in oscillations near the end. The problem of end effect can be overcome by imposing
certain conditions in the end samples. The spline approximation used for the computation of the envelopes
resulted in the introduction of new extrema points in the region where the signal is constant. Fig. 3 illustrates
the problem of end effects and introduction of new frequencies in the IMFs due to spline approximation
obtained using EMD. Another problem is the stopping criterion to obtain the IMFs. If the stopping criterion
is not properly satisfied, the IMF cannot be computed properly and this will affect the computation of IMFs.

4. Modelling and simulation of elastic wave scattering due to damages

Efficient models are required to understand the elastic wave dispersion and scattering in structures. In the
literature two different spectral element approaches are reported for wave propagation modelling. The first
one is based on the fast Fourier transformation (FFT) [24], whereas the second one is the time-domain method
[25]. The first spectral method popularised by Doyle [24], is a fast Fourier transform based method with the
matrix structure of finite element method (FEM). Typically, a single element is sufficient to model wave
propagation in large uniform structures. The second spectral method [26,27] combines the accuracy of spectral
methods with the flexibility of the FEM to model wave propagation. In this paper Fourier spectral finite



ARTICLE IN PRESS
R. Gangadharan et al. / Journal of Sound and Vibration 320 (2009) 915–941922
element method is employed for efficient computation of elastic wave scattering in structures. By virtue of its
domain transfer formulation and fast fourier transform, it bypasses the large system size of hp-FEM. The basic
framework of spectral finite element model employed in the present paper can be found in Ref. [24] for isotropic
solid and in Refs. [1,2,28] for laminated composite. SFEM is found to be suitable for damage identification and
characterisation problems and we will make use of this method in formulating various parameterised models of
wave scattering from damage, followed by signal analysis using STFT, WT and HHT.
5. Spectral finite element for modelling of elastic wave propagation in composite beams

Substituting the displacement field variables in the governing differential equations for a particular wave
propagation problem (see [2,29]), one obtains the characteristic equation in the frequency-wavenumber ðo; kÞ space

uðx; tÞ ¼
XN

n¼1

~uje
�iðkj x�ontÞ; ½F̂ ðkj ;onÞ�f ~ujg ¼ f0g, (10)

where u is the displacement, ~uj is the wave amplitude. This yields a sixth-order characteristic equation in kj given by

det½F̂ðkj ;onÞ� ¼ 0; 8on; n ¼ 1; 2; . . . ;N. (11)

Procedure to solve this equation in order to find the wavenumbers kjðonÞ can be found in Refs. [2,28–30]. In the
following sections, we shall use the notation ð:̂Þ for fourier transformed quantities and ð~:Þ for its amplitude (wave
coefficients).
5.1. Spectral finite element modelling approach

In this approach, one is able to utilise the dispersion branches over a suitably broad frequency band. After
computing the wavenumbers kjðonÞ for a particular sampling frequency on, the generic displacement vector is
written as

ûðx;onÞ ¼

R11 . . . R16

R21 . . . R26

R31 . . . R36

2
64

3
75½K0�

~u1

..

.

~u6

8>><
>>:

9>>=
>>; ¼ T 0ðx;onÞ ~u, (12)

where ½K0� is a diagonal matrix with exponential entries ðe�ikj xÞ [5].
By evaluating Eq. (12) at the element nodes at x ¼ 0;L (for one-dimensional element) the element nodal

displacement vector can be expressed as

û
e
¼

T0ðx;onÞx¼0

T0ðx;onÞx¼L

" #
~u ¼ T00 ~u. (13)

The non-singular complex matrix T00 represents the local wave characteristics of the displacement field.
Eliminating the unknown wave coefficient amplitude vector ~u from Eq. (12) using Eq. (13), the generic
displacement field ûðx;onÞ can be expressed in terms of the nodal displacements as

ûðx;onÞ ¼ T0ðx;onÞT
00�1û

e
¼ N̄ðx;onÞ

eû
e, (14)

where N̄ðx;onÞ is the exact/enriched spectral element shape function matrix. Next, the natural boundary
conditions are evaluated for x ¼ 0;L, which yield the element nodal force vector f̂

e
as

f̂
e
ðonÞ ¼

�Q0RK0x¼0 �Q00RK00x¼0
Q0RK0x¼L þQ00RK00x¼L

" #
T00�1û

e
ðonÞ ¼ K̂

e
ðonÞû

e
ðonÞ, (15)
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where K̂
e
ðonÞ is the exact spectral finite element stiffness matrix and it is a complex matrix function of

frequency unlike the form �o2Mþ K as obtained via hp-FEM. Q0 and Q00 are both real matrices whose
entries are the functions of the cross-sectional stiffness. K00 is a diagonal matrix obtained as

K00jj ¼
q
qx

K0jj. (16)

For those kinematics (e.g., higher-order beam, plate and layered system) where the complete wave vector is
to be considered instead of a scalar wavenumber as in case of simple beam, it is not always possible to
construct an exact spectral element. However, it is possible to construct an enriched spectral element using
incomplete dispersion characteristics [31]. In the next section we discuss the SFEMs for delamination and
material degradation due to matrix cracks. In the end of this paper we employ such parametric models for
damage identification studies.
6. Delaminated beams

The location of the nodes of the spectral elements for a delaminated beam is shown in Fig. 4a. In absence of
delamination, one spectral element between nodes 1 and 2 is sufficient. This is of great advantage that a very
small system is to be solved while adopting a suitable parameter estimation scheme like neural network,
genetic algorithm, etc. The presence of delamination, when treated as structural discontinuity by neglecting the
effect of stress singularity at the delamination tip, increases the number of elements from one to four. Six more
nodes are introduced to model individual base-laminates and sub-laminates. For the sub-laminate-elements
(elements 3 and 4) the nodes are located at the mid-plane of the sub-laminates and element lengths are equal to
the length of the delamination. The kinematic assumption for the interface of base-laminate and sub-laminates
is that the cross-section remains straight, that is, the slope is continuous and constant at the interface. Under
this assumption, one obtains the following kinematic relationship between the nodal degrees of freedom:
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base-laminates; waveguide 3–4: sub-laminates. (b) Force balance at the interface between base-laminate and sub-laminate elements.
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and similarly,

û6 ¼ S0û7; û8 ¼ S00û7. (19)

For the equilibrium of forces at the left interface AB (Fig. 4(b)), one can derive the following force balance
equation in frequency domain as
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>;, (20)

where N̂; V̂ ; M̂ stand for frequency domain axial force, shear force and bending moment, respectively. Eq. (20)
can be rewritten in matrix form as

f̂4 þ ST
1 f̂3 þ S00T f̂5 ¼ 0. (21)

Similarly, from the equilibrium of the right interface CD, one has

f̂7 þ S0T f̂6 þ S00Tf̂8 ¼ 0. (22)

After a finite element assembly of Eqs. (15), (21) and (22), one has the global system equation:
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T. (23)

Performing stationary condensation at each sampling frequency ðonÞ for the degrees of freedom at the internal
nodes 4 and 7, the final form of the equilibrium equation for this delaminated beam is obtained as

^̄KðonÞ
û1ðonÞ

û2ðonÞ

( )
¼

f̂1ðonÞ

f̂2ðonÞ

( )
, (24)

where ^̄K is the effective dynamic stiffness matrix for the spectral element with embedded delamination. Now,
one only needs to replace an usual spectral element with this damage spectral element wherever a possible
delamination may exist, keeping the original FE mesh unaltered. The parameters hidden inside are
ðh1; h2;L1;L2Þ, see Fig. 4. Hence, it is evident that insertion of this parameterised element on a modular
approach is very much suitable for faster modelling and simulation.

7. Beam with degraded material constants

In most of the damage models reported in literature, where the transverse matrix cracks, fiber splitting,
delamination, etc. and combination of them are considered, the degradation of effective elastic moduli of
damaged laminates can be used as damage parameters. Once estimated through measured signal and model
based solution, such parameters can further be correlated to the damage states and residual life of the
structure. Degraded laminate constitutive law under the plane-stress or the plane-strain condition can be
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expressed as [4]
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where z is the laminate thickness direction and x is the longitudinal direction (0� fiber direction), aij are the
degradation factors. For undamaged laminates aij ¼ 1. In general aij are functions of micro-crack geometries
and growth mechanism [4].

The location of the two nodes of the spectral element with embedded degraded zone in a beam is shown in
Fig. 5(a). In absence of degradation, one spectral element between nodes 1 and 2 is sufficient. The presence of
degradation, when treated as structural discontinuity by neglecting the effect of stress singularity at the
delamination tip, increases the number of elements from one to three as shown in Fig. 5(b). In usual hp-finite
element approach, one has to refine the mesh or enrich the interpolation drastically in the degraded zone. Here
only four more nodes are introduced to model the degraded zone (element (3)) and the surrounding
undamaged zones (elements (1) and (2)).

The kinematic assumption of continuity of displacements and rotations at the internal element nodes 3, 5
and 4, 6 leads to the following:

û5 ¼ fû
0
5 ŵ5 f̂5g

T ¼ û3; û6 ¼ fû
0
6 ŵ6 f̂6g

T ¼ û4. (26)

From the equilibrium of the nodal forces and the moments at the left interface (between nodes 3 and 5) and at
the right interfaces (between nodes 4 and 6), we get, respectively,

f̂3 þ f̂5 ¼ 0; f̂4 þ f̂6 ¼ 0. (27)

Following Eq. (15), the finite element equilibrium equation for the jth internal element (j ¼ 1; 2; 3) with nodes
p and q is written as
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21 K̂
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. (28)
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Performing finite element assembly of Eq. (28) over the three internal elements (1), (2) and (3) (see Fig. 6), we
get
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Next, by performing stationary condensation at each sampling frequency on at the internal nodes 3 and 4 and
assuming that no load is applied on the damaged zone, Eq. (29) becomes

^̄KðonÞ
û1ðonÞ

û2ðonÞ

( )
¼

f̂1ðonÞ

f̂2ðonÞ

( )
, (30)

where the submatrices of the new dynamic stiffness matrix ^̄K are defined as

^̄K11 ¼ K̂
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Eq. (30) is the equilibrium equation for the spectral element with embedded degraded zone, where only the
degrees of freedoms at the end nodes 1, 2 need to be used while forming the global system of a damaged
structures in frequency domain.

8. Parametric representation of signals due to wave scattering from damage

Analysis of acoustic-ultrasonic signals helps in obtaining important physical information like dispersion as
a function of geometry and material constants. It also helps in extracting information about the effect of small
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cracks and damage on the propagating waves, especially when the damage sizes are small compared to the
geometric scale of the structure itself, which cause dispersion and reflection of waves. In this section we carry
out spectral and time–frequency analysis and investigate the effect of perturbation of damage parameters like
material degradation factors and damage size on the model based estimate (damage index, DI).

The propagation of wave packet in a dispersive medium k ¼ kðoÞ is given by the Fourier integral

sðx; tÞ ¼
1

2p

Z þ1
�1

SðoÞeiðot�kxÞ do, (37)

where SðoÞ is a complex spectral function of the input signal and k is the wavenumber. In practice sðx; tÞ could
be in the unit of electrical voltage and it can be easily correlated to the field variable uðx; tÞ or their gradients in
the near field. The signal after propagation over a distance x ¼ L is considered as the output signal s2ðtÞ and it
can be expressed as

s2ðtÞ ¼ sðx; tÞjx¼L ¼
1

2p

Z þ1
�1

ðSðoÞHðoÞÞeiðot�kLÞ do, (38)

where HðoÞ describes the propagation of the wave in the dispersive medium and is given by

HðoÞ ¼
S2ðoÞ
S1ðoÞ

¼ e�ikL, (39)

where S1ðoÞ and S2ðoÞ are the Fourier transforms of the input signal s1ðtÞ and the output signal s2ðtÞ,
respectively.

In what follows, we shall use a simple transmission line model for simulating dispersion and scattering of
analytic signal sðx; tÞ. Consider a cantilever beam with length L, cross-sectional area A, and density r. The
wavelength of the elastic wave is assumed to be greater than the thickness of the beam and therefore it can be
approximated as a plane wave propagating with an acoustic impedance Zp ¼ rvA where v is the velocity of the
wave. Interaction between the waves with damage leads to reflection due to the change in the acoustic
impedance (ignoring any mode conversion). The reflection coefficient RðoÞ due to damage can conveniently be
expressed as

RðoÞ ¼
Zd � Zp

Zd þ Zp

, (40)

where Zd is the acoustic impedance of the damage. If the damage is due to material degradation over a small
length ðlÞ of the beam, then Zd is obtained as

Zd ¼ Zp

aZp þ jZp tanðklÞ

Zp þ jaZp tanðklÞ
, (41)

where a is the material damage coefficient [32]. The wavenumber k used in Eq. (41) represents the fundamental
anti-symmetric Lamb wave mode or the flexural mode (A0) propagating in the beam. The reflected signal
containing such damage information is then given by

sdðtÞ ¼
1

2p

Z þ1
�1

RðoÞSðoÞeiot�kx do. (42)

Damage parameter estimation can now be carried out with the known input signal, the known dispersion
relation for the undamaged system and the unknown damage parameters. However, there could be difference
between the experimental and the simulated wave propagation results and it is due to the presence of noise,
modelling errors and model discretisation errors. Next, we calculate the bounds of this difference/error based
on the energy of the signal. We focus our attention to the reflected signal from the damage and the energy
bounds in terms of the damage parameters. Let us assume that the damage parameters a and l are perturbed
by small parameters �1 and �2, respectively. By varying �1 and �2, the energy of the reflected signal from the
damage is calculated. The signal is then analysed using signal processing techniques like FT, WT and HT to
compute the energy of the coefficients. Substituting Eq. (41) in Eq. (40), the reflected signal coefficient RðoÞ is
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obtained as

RðoÞ ¼ HðoÞ ¼
Zd � Zp

Zd þ Zp

¼

Zp

Zd þ iZp tanðklÞ

Zp þ iZd tanðklÞ
� Zp

Zp

Zd þ iZp tanðklÞ

Zp þ iZd tanðklÞ
þ Zp

. (43)

By assuming that Zd ¼ aZp, the above equation is simplified into the following:

RðoÞ ¼

aþ i tanðklÞ

1þ ia tanðklÞ
� 1

aþ i tanðklÞ

1þ ia tanðklÞ
þ 1

¼
ð1� aÞð�1þ i tanðklÞÞ

ð1þ aÞð1þ i tanðklÞÞ

¼
ð1� aÞð1þ aÞ�1

4
½�1� e�i2kl þ ið1� e�i2klÞ�. (44)

By using the binomial series expansion in terms of a and exponential series expansion in terms of kl and
neglecting the higher-order terms Oða3Þ, Oðkl3Þ, Eq. (44) is simplified to the following:

RðoÞ ’
1

4
ð1� aÞð1� aþ a2Þð�1� ð1þ i2kl � 2k2l2ÞÞ

þ ið1� ð1� i2kl þ 2k2l2ÞÞ þOða3Þ þOðk3l3Þ

’
ð1� 2aþ 2a2Þ

4
ð�2� i2kl þ 2k2l2 � 2kl � i2k2l2Þ þOða3Þ þOðk3l3Þ. (45)

With perturbation a að1þ e1Þ and l  lð1þ e2Þ, where �1 and �2 are two small parameters, Eq. (45)
becomes

Rðo; e1; e2Þ ’ 1
4
½1� 2að1þ e1Þ þ 2a2ð1þ e1Þ

2
�½�2� 2klð1þ e2Þð1þ iÞ þ 2k2l2ð1þ e2Þ

2
ð1� iÞ�. (46)

By grouping the constant terms with �0, �1 and �2, one has

RðoÞ ¼ e0Re0 þ e1Re1 þ e2Re2 , (47)

where

Re0 ðo; a; l; kÞ ¼ ð
1
2� aþ a2Þð�1þ ð�1� iÞkl þ ð1� iÞk2l2Þ,

Re1 ðo; a; l; kÞ ¼ ð�1� iÞð1
2
� aþ a2Þkl � að�1þ ð�1� iÞkl þ ð1� iÞk2l2Þ þOðe21Þ,

Re2 ðo; a; l; kÞ ¼ 2ð�1� iÞa2kl þ ð1� iÞð1� 2aþ 2a2Þk2l2

þ 2a2ð�1þ ð�1� iÞkl þ 2ð1� iÞk2l2Þ þOðe1e2Þ þOðe22Þ. (48)

The reflected signal due to damage has now the form

SdðoÞ ¼ RðoÞSðoÞ

¼ e0Re0ðoÞSðoÞ þ e1Re1ðoÞSðoÞ þ e2Re2ðoÞSðoÞ. (49)

In mathematics, a Sobolev space is defined as the space of p-power integrable functions and the ultrasonic
signals fall under the space of square integrable functions, that is, p ¼ 2. The norm for L2 space is given by

kf k2 ¼

Z þ1
�1

jf j2 dt. (50)
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We now define spectral energy of Sd in Eq. (49) as kSdðoÞk2. By applying the Cauchy–Schwarz inequality in
Eq. (49), we get

kSdðoÞk2 ¼ ke0Re0 ðoÞSðoÞ þ e1Re1 ðoÞSðoÞ þ e2Re2 ðoÞSðoÞk
2

pe20kRe0 ðoÞSðoÞk
2 þ e21kRe1ðoÞSðoÞk

2 þ e22kRe2 ðoÞSðoÞk
2. (51)

In order to see how different the simulated results are from the experimental results, we need a way to bound
the differences between them. The spectral energy bounds from Eq. (51) provides an estimate of the variation
in the spectral energy of the damage signal as a function of the damage length and the material degradation
factor. Here we have divided the problem into two sub-problems, firstly the energy contribution from the �0
term representing the energy contribution of the smaller scales and secondly the energy contributions from the
parameters �1; �2 which are the correction terms from the large scales to the small scales. In this formulation we
have not taken into account the presence of noise in the signal. The energy contributions from the �0 term are
obtained from simulation with known material and geometric parameters and this in general will either be a
lower or upper bound to the experimental results. The energy contributions from the terms with �1, �2 provides
an analytical estimate of the differences between the experimental and simulated results. This correction term
helps in providing a bound from the signal processing point of view. The drawback in this method is that it
does not provide any information regarding the way in which energy is varying with time and frequency of the
signal. Therefore, we extend this study using WT and HHT.

First, we study the signal due to damage and apply WT. The transformed signal can be expressed as

Ŝdðb; aÞWT ¼
1ffiffiffi
a
p

Z þ1
�1

SdðtÞc
� t� b

a

� �
dt. (52)

The above equation in the frequency domain is expressed as

^̂
Sd ðb; aÞWT ¼

ffiffiffi
a
p
Z þ1
�1

Sd ðoÞĉ
�
ðaoÞei2pbo do. (53)

The energy of the wavelet coefficients is given by

k
^̂

Sdðb; aÞWTk
2 ¼

ffiffiffi
a
p
Z þ1
�1

SdðoÞĉ
�
ðaoÞei2pbo do

����
����
2

¼ akSdðoÞĉ
�
ðaoÞk2. (54)

The energy density of the wavelet coefficient is bounded as follows:

k
^̂

Sd ðb; aÞWTk
2 ¼ akfe0Re0 ðoÞSðoÞ þ e1Re1 ðoÞSðoÞ þ e2Re2 ðoÞSðoÞgĉ

�
ðaoÞk2

pae20kRe0 ðoÞĉ
�
ðaoÞSðoÞk2 þ a2e21kRe1ðoÞĉ

�
ðaoÞSðoÞk2

þ ae22kRe2 ðoÞĉ
�
ðaoÞSðoÞk2. (55)

The energy distribution among (�1, �2) terms provides additional information to the simulated signal and helps
in accounting for the terms missing in the numerical model.

Next, let us consider the same signal due to damage by applying the HT. The IMFs obtained from EMD are
studied using HT to extract the instantaneous frequency. The HT changes only the phase of the signal with
effect on the signal amplitude. The main idea of applying HT here is to make the signal analytic resulting in
only positive frequencies. The HT of the signal is given by

vðtÞ ¼ �
1

p
PV

Z þ1
�1

uðZÞ
Z� t

dZ, (56)

where PV is the principal value of the cauchy integral. One can simplify the integral and write

vðtÞ ¼ uðtÞ �
1

pt
, (57)
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where � describes the convolution operator. In the frequency domain, HT of vðtÞ is expressed as

v̂ðoÞ ¼ �i sgnðoÞUðoÞ. (58)

Next, the HT is applied to the signal due to damage. This can be expressed as

qðtÞ ¼ sdðtÞ þ iHT½sd ðtÞ�,

Q̂ðoÞ ¼ SdðoÞ þ i½�i sgnðoÞSdðoÞ�

¼ ½1þ sgnðoÞ�SdðoÞ,

1þ sgnðoÞ ¼

2 for o40;

1 for o ¼ 0;

0 for oo0:

8><
>: (59)

We find that the energy density of the HT is bounded in the following form:

kQ̂ðoÞk2 ¼ ½1þ sgnðoÞ�2ke0Re0ðoÞSðoÞ þ e1Re1ðoÞSðoÞ þ e2Re2 ðoÞSðoÞk
2

p½1þ sgnðoÞ�2fe20kRe0ðoÞSðoÞk
2 þ e21kRe1 ðoÞSðoÞk

2 þ e22kRe2ðoÞSðoÞk
2g. (60)

8.1. Numerical example

A AS/3505-6 graphite-epoxy laminated composite cantilever beam of length 0.8m and having a cross-
sectional area 10mm thickness �10mm width is considered in this example. Material degradation in the beam
is modelled using spectral finite element method with the damage parameters a ¼ 0:35; l ¼ 0:03m. The
damage is present at a distance of 0.4m form the fixed end of the beam. A single frequency tone-burst
sinusoidal pulse modulated at 20 kHz is applied transversely at the tip cross-section to generate the A0 mode
and the reflected signal is picked up at the same position. The effect of the small parameters �1; �2 on the energy
density of FT, WT and HT techniques are studied as follows.

The spectral energy bounds of the reflected signal from the damage are calculated using Eq. (51). The effect
of the small parameters �1; �2 are studied by varying them independently. First, �1 is varied and the spectral
energy density is plotted as shown in Fig. 6(a). The effect of �1 is negligible on the spectral energy density.
Next, �2 is varied and Fig. 6(b) shows the corresponding spectral energy density. Here the effect of �2 is more
compared to �1 and it implies that a small perturbations of the length of the damage has more effect compared
to the perturbation of the material degradation parameter on the power spectral density.

Next, we compute the wavelet spectral energy bounds of the damage signal in the time–frequency plane
using Eq. (55). The wavelet energy density values are computed for the input signal frequency of 20 kHz and
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the effect of ð�1; �2Þ on wavelet spectral energy density is shown in Fig. 7. As observed in the spectral domain,
the effect of �2 is more compared to �1 on the wavelet spectral energy density. Similarly, we also compute the
Hilbert energy bounds using Eq. (60) in the time–frequency plane. The Hilbert energy density is computed by
varying �1; �2 and plotted in Fig. 8. The result shows that the effect of �1 is again less compared to �2 on the
Hilbert energy density computed on reflected signal from damage.

9. Damage index

DI provides a measure of the damage in the structure by studying the signals scattered from the damage. DI
measures based on signal processing have been reported by Jeong et al. [33]. In that study, DI was defined as
the ratio of the scattered energy of the S0 mode to the baseline energy of the S0 mode. In the present approach,
we define DI as the L2 norm of the WT and HHT coefficients due to the reflected signal from the damage.
Effect of structural boundary, etc. on the reflected signal is eliminated either using a baseline model or
measurement on the healthy structure. We make use of the following definition of DI based on WT given by

DIWT ¼
XN

i¼1

kx̂ða; bÞWTi
k2, (61)

where N is the total number of sampling points on the time axis. In the case of HHT, DI is computed as the L2

norm of the instantaneous amplitude of the signal and expressed as

DIHHT ¼
XN

i¼1

kaðtiÞk
2. (62)

The DIs are proportional to the energy of the wave reflected from the damage and provides information about
the size of the damage.

10. Analysis of experimental signals from a cracked beam

An experiment is conducted on an aluminum beam of length 0.5m and thickness 4mm. The main focus here
is to detect damage, if any, from the experimental signals. Excitation signal is generated through two 1mm
thick PZT crystals, one bonded at the top surface and the other bonded at the bottom surface near the root of
the beam as shown in Fig. 9. Single-axis accelerometers are placed at the baseline model nodes as shown in
Fig. 10(a) for the eight-sensor configurations. The mid-span crack is throughwidth and is of 2mm thickness
and 0.75mm slot-width. The two ð30� 30� 10mm3Þ PZT crystals are excited in d31 mode (transversely
polarised mode) of the beam using power amplifier, which is driven by DSPACE DS 2103 DAQ board. A
pulse of 1ms duration with peak voltage of 100V and of similar shape shown in Fig. 10(b) is employed to



ARTICLE IN PRESS

S5

S4
PZT Actuator

Crack

Accelerometer

Tip loading for
progressive failure

Fig. 9. Instrumented sample with eight-sensor configuration.

s8s6

PZT Crack

s1 s2 s7

2 @ 57.5 2 @ 50 2 @ 5035 2 @ 75

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Lo
ad

 (N
)

0 20 40 60 80
0

0.2
0.4
0.6
0.8

1
x 10−4

Frequency (kHz)
S

pe
ct

ra
l A

m
pl

itu
de

Time (μ sec)

s3 s4 s5

Fig. 10. Aluminum cantilever beam with through-width 2mm crack at the mid-span and PZT patches for diagnostic signal generation:

(a) eight-sensors configuration with accelerometers; (b) a high frequency pulse used to study the response of the cracked composite beams.

The spectral amplitude f̂ over the frequency axis is shown in inset.

R. Gangadharan et al. / Journal of Sound and Vibration 320 (2009) 915–941932
excite the PZT crystals connected in parallel. All other nodal forces are zero because no load is applied at these
nodes. The sampling time for both the signal generation as well as acquisition is 27:26 ms. Figs. 9 and 10 show
the instrumented samples with the PZT crystals, accelerometers and the slotted crack with 0.75mm clearing.
Figs. 11(a)–(e) and 12(a)–(e) show the acceleration histories at various loading states measured from the sensor
s4 on the left side of the crack, and also from sensor s5 on the right side of the crack. It can be observed from
Figs. 11 and 12 that the presence of crack causes deviation in the response in the sensors s4 and s5. WT is
applied to the acceleration signals at various time instances of the progressive failure of the beam under tip
loading for both the sensors s4 and s5. The WT coefficients jWTða; bÞj at frequency 1 kHz is computed and
plotted at various time instants as shown in Fig. 13. The time stamp t1 indicated no load and the time stamp t6
indicates complete failure of the beam by plastic hinge formation at the crack location. The crack reflects
the incident wave back to sensor s4. As a result, the wavelet coefficient value increases as the crack grows. But
the crack transmits less energy across it to the sensor s5, which indicates decrease in the wavelet coefficients as
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the beam tends to failure. The signal from sensors s4 and s5 are also studied using HHT technique. The
unwrapped phase is computed at various loading instants and shown in Fig. 14. The presence of crack reflects
the waves with higher amplitude at s4 and leads to more oscillations. As a result, the unwrapped phase
increases with the growing crack. Less energy is transferred across the crack to s5, which leads to less
oscillation in the signal and therefore it reduces the unwrapped phase at the subsequent load instants. Thus
WT and HHT based approaches are able to distinguish the presence of progressive damage in the form of
crack in a beam.

11. Numerical simulation of damage parameter sensitivities

11.1. Effect of delamination parameters

A AS/3505-6 graphite-epoxy laminated composite cantilever beam of length 800mm and having a cross-
sectional area 16mm thickness �10mm width is considered for this study. Numerical simulation is performed
using single spectral element with damage and with 4096 FFT sampling points (Do ¼ 48:828Hz). A single
frequency tone-burst sinusoidal pulse modulated at 20 kHz (Fig. 15) is applied transversely at the tip cross-
section to generate the first antisymmetric mode (A0) in the beam. Keeping the right tip of the delamination at
a fixed distance L1 ¼ 0:6m from node 2, delamination length L2 is varied from 20 to 215mm with an
increment of 5mm at every step. The transverse velocity at the tip is plotted in Fig. 16. Variation in the
amplitude of the reflected wave from the delamination tip as function of the delamination length is found to be
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periodic in nature. It is diminishing near those values of the delamination lengths which are in integer multiple
of half of the group wavelength lg. The group speed is calculated as cg ¼ 2724m=s. Now, considering the
frequency of excitation o ¼ 20 kHz, we compute the group wavelength as lg ¼ cg=o � 136mm. The reason
for this periodicity of lg=2 can be attributed to the cancellation or amplification of the scattered waves from
the two tips of the delamination. For those lengths of the delamination, which are near integer multiple of
lg=2, the reflection generated by one tip of delamination is attenuated by the reflection generated by the other
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tip being out of phase. Complete cancellation of the reflection is not possible because of some dispersiveness of
the scattered wave. WT is applied to study the signals reflected from the delamination of various lengths. The
wavelet coefficients are shown in Fig. 17. From Fig. 17, it is clear that the value of wavelet coefficients are
small for lengths of delamination which are near integer multiple of lg=2.Similar behaviour is seen in the
variation of magnitude of HHT as shown in Fig. 18. The DI for delamination using WT is calculated by
taking the square norm of the wavelet coefficients at the input signal frequency of 20 kHz. For HHT, the DI is
computed by taking the square of the norm of the instantaneous amplitude of the first IMF of the signal. The
DI computed for various delamination lengths using WT and HHT are shown in Fig. 19. It is clear from the
figure that the value of DI is very small when the delamination length is of the order of lg=2.
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Degradation factor a11 ¼ 0:2.
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11.2. Material degradation due to transverse matrix crack in composite

In order to simulate the effect of stiffness degradation on the diagnostic signal, a AS/3505-6 graphite-epoxy
laminated composite cantilever beam of length 800mm, thickness 16mm and width 10mm is considered.
All the plies are assumed to be of equal thickness with stacking sequence (0�40=90

�
80=0

�
40), here the subscript

indicates the number of plies. It is assumed that all the 90� plies are degraded with same factor of a11
(Eq. (25)). The dynamic force as considered earlier in Fig. 15 is applied in the transverse direction at the tip
to generate the A0 mode in the beam. We assumed that the plies were degraded uniformly within the
degraded zone.
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In order to study the effect of the length of the degraded zone, we consider the same cantilever beam as
considered above with one of the interface fixed at 0.4m distance from the tip. The length of the degraded zone
is varied by moving the other interface towards the fixed-end from 0.1 to 0.4m. The last case represents one
half of the beam on the fixed-end side of the beam as degraded. The transverse velocity histories at the tip of
the beam for this variation in the size of degraded zone are shown in Fig. 20 for a11 ¼ 0:2. From Fig. 20, it can
be seen that for smaller size of the degraded zone with degradation (a11 ¼ 0.2), both the reflections from the
two interfaces are easily detectable. WT and HHT are applied to the simulated signals of material degradation
of various lengths. In the case of WT, the wavelet coefficients at 20 kHz, and for HHT the instantaneous
amplitude of the signal are shown in Fig. 21 for various length of degraded zone. The reflections from the
damage and free-end of the beam are clearly seen. The amplitude of the reflections seems to decrease with the
increase in the degradation length as the energy is absorbed across the damage.

Next, we consider a broad-band Gaussian type pulse to study the response of the degraded zone. This
constitutes a truly multiresolution problem. Fig. 10(b) shows the time history of a Gaussian pulse having a
frequency content up to 40 kHz (shown in the figure inset). Here it is important to note that in order to
interrogate using a particular wave mode, which is preferably less dispersive and produces a wavelength
smaller than the damage size, the operating frequency of the transducers needs to be chosen optimally. At
lower frequencies and for thinner structures, the dominant propagating wave modes are due to longitudinal
elastic moduli. On the other hand, at higher frequencies and especially for a thicker structure, the dominant
propagating modes are due to shear modulus and Poisson’s ratio. Therefore, the damage models that should
be used for numerical simulations and correlations between signal and damage parameters via experiments
must include such frequency dependent factors adequately. In the present case, the chosen broad-band signal
is such that it generate the A0 mode in the beam and it is well below the cut-off frequency of all other higher-
order Lamb wave modes. Hence the assumption of the degraded longitudinal modulus, undamaged transverse
and shear moduli of the cross-ply, as in the earlier examples and also considered here, remains within the
validity of the multiresolution analysis using WT and HHT.

In order to study the effect of the length of the degraded zone under the Gaussian pulse type excitation
signal, we consider the same beam configuration as used for narrow-band pulse. The transverse velocity
histories at the tip of the beam for variation in the size of degraded zone are shown in Fig. 22 for a11 ¼ 0:2.
Processing of broad-band signal is more tedious compared to narrow-band signals and the dispersive nature of
the waves in the composite beam makes the task more complicated. To simplify the problem, the wavelet
coefficients at all the frequencies are summed together at each time instant for signals of different degradation



ARTICLE IN PRESS

0

0.5

1

1.5 0.1
0.15

0.2
0.25

0.3
0.35

0.4

−10

0

10

20

Degraded length (m) 

time (ms) 

Tr
an

sv
er

se
 V

el
oc

ity
(m

m
/s

)
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lengths and they are shown in Fig. 23(a). The first set of peaks in the figure indicates the reflection from the
fixed end of the damage and the second set of peaks represents the reflection from the varying end of the
damage. Fig. 23(a) also shows clearly that the amplitude of the second reflection decreases with the increase in
the damage size. In the case of HHT, the unwrapped phase of the signal of different degradation lengths are
shown in Fig. 23(b). The variation of the unwrapped phase decreases with the damage length. This clearly
indicates that the wave is absorbed and attenuated more as the length of degradation increases.

12. Conclusion

Time–frequency representations like wavelet transform (WT) and Hilbert–Huang transform (HHT) are
employed to analyze the scattered wave signal due to damage from both experiments and simulations in order
to identify the damage location and the dispersion of signal after they interact with various types of damages.
Spectral finite elements are used to simulate the wave propagation in composites with delaminations and
material degradation of various damage size. Both the narrow- and broad-band signals are employed to
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interrogate the damages. In the case of narrow-band signals, WT and HHT are able to locate the damage and
characterise its size. But for broad-band signals WT and HHT are able to only indicate the presence of damage
and other informations are difficult to process, which is due to the dispersive nature of the broad-band signal.
A damage index based on WT and HHT coefficients is proposed. For delamination lengths of the order of the
wavelength of the incident wave, there is no reflection of wave from the damage and this result provides an
insight of the interaction of the waves with damage. An analytical study is carried out to study the effects of
higher-order scale damage parameters on the reflected wave signal. The reflected signal energy is found to be
perturbed by higher-order scale parameters and their effect are studied in the spectral domain and also in the
time–frequency domain. We are able to obtain the energy bounds analytically using FT, WT, HHT and this
provides a good estimate of the error in the modelling of the wave propagation in a damaged structure.
Sensitivity analysis based on TFR is performed. The results show variation of damage index with respect to
the damage parameters like damage length and material degradation. Thus, the sensitivity analysis based on
TFR helps in deducing important informations about the damage in the structure and ultimately helps in
designing a reliable Structural Health Monitoring system.
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